
Open Source Datacenter Systems

Apache KAFKA 

InfoVerse © 2020



2

LAMP Stack

• L – Linux
• A -- Apache 
• M – MySQL/MSQL/MariaDB

• P – PHP/Perl/Python



3

SMACK Stack

• Spark – A general engine for large-scale data processing, enabling 
analytics from SQL queries to machine learning, graph analytics, and 
stream processing

• Mesos – Distributed systems kernel that provides resourcing and isolation 
across all the other SMACK stack components. Mesos is the foundation on 
which other SMACK stack components run.

• Akka – A toolkit and runtime to easily create concurrent and distributed 
apps that are responsive to messages.

• Cassandra – Distributed database management system that can handle 
large amounts of data across servers with high availability.

• Kafka – A high throughput, low-latency platform for handling real-time 
data feeds with no data loss.



4

Kafka Introduction

• Kafka is an Open Source project managed by Apache Foundation 
(https://kafka.apache.org/)

• Originally developed at LinkedIn in 2010

• Commercial support provided by Confluent (https://www.confluent.io/)

• Competitors – RabbitMQ, ActiveMQ

• Decouples producer and consumer

• Highly Scalable – billions of messages per day

• High performance

• Non-blocking architecture 

• Low latency



5

Kafka Features

• Apache Kafka is a distributed messaging system providing fast, highly 
scalable and redundant messaging through a publisher-subscriber model. 
Apache Kafka is highly available and resilient to node failures and supports 
automatic recovery. 

• Apache Kafka has provision of robust queue that can handle a high volume 
of data and has enabler to pass on the messages from one end point to 
another. Kafka is suitable for both offline and online message 
consumption. 

• Apache Kafka is built on top of the Zookeeper synchronization service. All 
Kafka messages are organized into topics. It integrates very well with 
Apache Storm and Spark for real-time streaming data analysis. 



6

Kafka Capabilities 
A streaming platform has three key capabilities:
• Publish and subscribe to streams of records, similar to a message queue or 

enterprise messaging system.
• Store streams of records in a fault-tolerant durable way.
• Process streams of records as they occur.

Kafka is generally used for two broad classes of applications:
• Building real-time streaming data pipelines that reliably get data between 

systems or applications
• Building real-time streaming applications that transform or react to the 

streams of data



7

Kafka Design
Kafka has four core APIs:

The Producer API allows an application to publish a stream of records to one or 
more Kafka topics.

The Consumer API allows an application to subscribe to one or more topics and 
process the stream of records produced to them.

The Streams API allows an application to act as a stream processor, consuming an 
input stream from one or more topics and producing an output stream to one or 
more output topics, effectively transforming the input streams to output streams.

The Connector API allows building and running reusable producers or consumers 
that connect Kafka topics to existing applications or data systems. For example, a 
connector to a relational database might capture every change to a table.

https://kafka.apache.org/documentation.html#producerapi
https://kafka.apache.org/documentation.html#consumerapi
https://kafka.apache.org/documentation/streams
https://kafka.apache.org/documentation.html#connect


8

Messaging Infrastructure 



9

Kafka Architecture 



10

Kafka Infrastructure



11

Kafka Features 
Multi-tenancy
You can deploy Kafka as a multi-tenant solution. Multi-tenancy is enabled by 
configuring which topics can produce or consume data. There is also operations 
support for quotas. Administrators can define and enforce quotas on requests to 
control the broker resources that are used by clients. 

Guarantees
At a high-level Kafka gives the following guarantees:
Messages sent by a producer to a particular topic partition will be appended in 
the order they are sent. That is, if a record M1 is sent by the same producer as a 
record M2, and M1 is sent first, then M1 will have a lower offset than M2 and 
appear earlier in the log.
A consumer instance sees records in the order they are stored in the log.
For a topic with replication factor N, we will tolerate up to N-1 server failures 
without losing any records committed to the log.

https://kafka.apache.org/intro#intro_multi-tenancy
https://kafka.apache.org/intro#intro_guarantees


12

Kafka Features  

Kafka for Stream Processing
It isn't enough to just read, write, and store streams of data, the purpose is to 
enable real-time processing of streams.
In Kafka a stream processor is anything that takes continual streams of data from 
input topics, performs some processing on this input, and produces continual 
streams of data to output topics

Kafka as a Storage System
Any message queue that allows publishing messages decoupled from consuming 
them is effectively acting as a storage system for the in-flight messages. What is 
different about Kafka is that it is a very good storage system



13

Tibco Kafka
• TIBCO ActiveMatrix BusinessWorks Plug-in for Apache Kafka – Community 

Edition plugs into TIBCO ActiveMatrix BusinessWorks. 

• Apache Kafka palette can be used to create producers, consumers and 
perform send message and receive message operations.

• The plug-in provides the main features given below: 

• Kafka Connection Shared Resource
Kafka connection shared resource is used to connect and fetch the list of 
topics from Kafka server. The shared resource is used by the other 
activities for configuring the connection. 
Kafka SendMessage Activity

• This activity sends message to the Kafka consumer. This activity performs 
as Kafka producers which sends the message to a specified topic and 
consumer can fetch the message from the specified topics. 
Kafka ReceiveMessage Activity 

• This activity is a process starter activity that starts the process based on 
the receipt of Kafka messages. 



14

Key Takeaways

• Apache Kafka is a very powerful messaging application

• Allows connectivity between producer and consumer

• Multiple consumers can access the same data without any performance 
penalty

• Kafka supports both Queueing and Publish-Subscribe concepts

• Provides replication thereby increasing resilience to failures

• Kafka can provide storage of data from bytes to Tbytes

• Kafka is able to provide real-time processing of events

• Use cases include messaging, log aggregation, monitoring and stream 
processing


	LAMP Stack
	Slide 2
	SMACK Stack
	Kafka Introduction
	Kafka Features
	Kafka Capabilities
	Kafka Design
	Messaging Infrastructure
	Kafka Architecture
	Kafka Infrastructure
	Kafka Features
	Kafka Features
	Tibco Kafka
	Key Takeaways

